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1 Introduction

One of the key tasks of the Applied Research Branch in the Numerical Aero-
dynamic Simulation (NAS) Systems Division at NASA Ames Research Cen-
ter is the accelerated introduction of highly parallel and related key hard-
ware and software technologies into a full operational environment (see [35]).
JFrom 1988 - 1991 a testbed facility has been established for the develop-
ment and demonstration of highly parallel computer technologies. Currently
a 32K processor Connection Machine CM-2 and an 128 node Intel iPSC/860
are operated at the NAS Systems Division. This testbed facility is envisioned
to consist of successive generations of increasingly powerful highly parallel
systems that are scalable to high performance capabilities beyond that of
conventional super computers. In the last two years a number of large scale
computational fluid dynamics applications have been implemented on the two
testbed machines, and the potential of the parallel machines for production
use has been evaluated. Beyond that, a systematic performance evaluation
effort has been initiated (see [7, 2, 3]), and basic algorithm research has been
continued.

In this report we will first give a brief description of the capabilities of the
parallel machines at NASA Ames. Then we will discuss some of the research
carried out in the implementation of computational fluid dynamics (CFD)
applications on these parallel machines. We focus here on those applications
where we have more detailed knowledge because of our own involvement:
3D Navier-Stokes multi-block structured grid codes, an explicit 2D Euler
solver for unstructured grids, and a simulation based on particle methods.
Finally we will outline the computational requirements for large scale aero-
sciences grand challenge applications by analyzing one such application at
NASA Ames. In the last section we offer some preliminary conclusions on
the performance of current parallel machines for CFD applications, as well as
the potential of the different architectures for production use in the future.
Another summary of the experience with parallel machines at NASA Ames is
given by D. Bailey in [5]. A more comprehensive survey of the NASA Com-
putational Aerosciences Program with more emphasis on the applications is
given in [22].



2 Parallel Machines at NASA Ames

2.1 Connection Machine

The Thinking Machines Connection Machine Model CM-2 is a massively
parallel SIMD computer consisting of many thousands of bit serial data pro-
cessors under the direction of a front end computer. The system at NASA
Ames consists of 32768 bit serial processors each with 1 Mbit of memory and
operating at 7 MHz. The processors and memory are packaged as 16 in a
chip. Each chip also contains the routing circuitry which allows any proces-
sor to send and receive messages from any other processor in the system. In
addition, there are 1024 64-bit Weitek floating point processors which are
fed from the bit serial processors through a special purpose “Sprint” chip.
There is one Sprint chip connecting every two CM chips to a Weitek. Fach
Weitek processor can execute an add and a multiply each clock cycle thus
performing at 14 MFLOPS and yielding a peak aggregate performance of 14
GFLOPS for the system.

The Connection Machine can be viewed two ways, either as an eleven
dimensional hypercube connecting the 2048 CM chips or as a ten dimen-
sional hypercube connecting the 1024 processing elements. The first view is
the “fieldwise” model of the machine which has existed since its introduction.
This view admits to the existence of at least 32768 physical processors (when
using the whole machine), each storing data in fields within its local memory.
The second is the more recent “slicewise” model of the machine, which ad-
mits to only 1024 processing elements (when using the whole machine), each
storing data in slices of 32 bits distributed across the 32 physical processors
in the processing element. Both models allow for “virtual processing”, where
the resources of a single processor or processing element may be divided to
allow a greater number of virtual processors.

Regardless of the machine model, the architecture allows interprocessor
communication to proceed in three manners. For very general communication
with no regular pattern, the router determines the destination of messages
at run time and directs the messages accordingly. This is referred to as gen-
eral router communication. For communication with an irregular but static
pattern, the message paths may be pre-compiled and the router will direct
messages according to the pre-compiled paths. This is referred to as compiled
communication and can be 5 times faster than general router communication.



Finally, for communication which is perfectly regular and involves only shifts
along grid axes, the system software optimizes the data layout by ensuring
strictly nearest neighbor communication and uses its own pre-compiled paths.
This is referred to as NEWS (for “NorthEastWestSouth”) communication.
Despite the name, NEWS communication is not restricted to 2-dimensional
grids, and up to 31-dimensional NEWS grids may be specified. NEWS com-
munication is the fastest. An analysis of the communication speed of the
CM can be found in [29].

The I/O subsystems connect to the data processors through an 1/O con-
troller. An I/O controller connects to 8192 processors through 256 1/0 lines.
There is one line for each chip but the controller can only connect to 256
lines simultaneously and must treat its 8K processors as two banks of 4K
each. Each I/O controller allows transfer rates of up to 40 MB per second.
In addition to an I/O controller there can be a frame buffer for color graphics
output. Because it is connected directly to the backplane rather than through
the I/0 bus, the frame buffer can receive data from the CM processors at 256
MB per second. The system at NASA Ames has two frame buffers connected
to two high resolution color monitors and four I/O controllers connected to
a 20 GB DataVault mass storage system.

The Connection Machine’s processors are used only to store and process
data. The program instructions are stored on a front-end computer which
also carries out any scalar computations. Instructions are sequenced from
the front end to the CM through one or more sequencers. Each sequencer
broadcasts instructions to 8192 processors and can execute either indepen-
dent of other sequencers or combined in two or four. There are two front end
computers at NASA Ames, a Vax 8350 and a Sun 4/490, which currently sup-
port about 100 users. There are two sequencer interfaces on each computer
which allow up to four dedicated processes. In addition, the system software
supports the Network Queue System (NQS) and time sharing through the
CM Time Sharing System (CMTSS).

The Connection Machine system was first installed at NASA Ames in
June of 1988. Since then the system has undergone a number of upgrades,
the most recent being completed in February of 1991. An assessment of the
system is given in [40]. Perhaps its greatest strength, from a user standpoint,
is the robust system software. This is of critical importance to NASA as it
moves its parallel machines into production mode.



2.2 Intel iPSC/860

The Intel iPSC/860 (also known as Touchstone Gamma System) is based
on the 64 bit i860 microprocessor by Intel [23]. The i860 has over 1 million
transistors and runs at 40 MHz. The theoretical peak speed is 80 MFLOPS
in 32 bit floating point and 60 MFLOPS for 64 bit floating point operations.
The 1860 features 32 integer address registers, with 32 bits each, and 16
floating point registers with 64 bits each (or 32 floating point registers with
32 bits each). It also features an 8 kilobyte on-chip data cache and a 4
kilobyte instruction cache. There is a 128 bit data path between cache and
registers. There is a 64 bit data path between main memory and registers.

The 1860 has a number of advanced features to facilitate high execution
rates. First of all, a number of important operations, including floating
point add, multiply and fetch from main memory, are pipelined operations.
This means that they are segmented into three stages, and in most cases a
new operation can be initiated every 25 nanosecond clock period. Another
advanced feature is the fact that multiple instructions can be executed in
a single clock period. For example, a memory fetch, a floating add and a
floating multiply can all be initiated in a single clock period.

A single node of the iPSC/860 system consists of the i860, 8 megabytes
(MB) of dynamic random access memory, and hardware for communication
to other nodes. For every 16 nodes, there is also a unit service module to
facilitate access to the nodes for diagnostic purposes. The iPSC/860 system
at NASA Ames consists of 128 computational nodes. The theoretical peak
performance of this system is thus approximately 7.5 GFLOPS on 64 bit
data.

The 128 nodes are arranged in a seven dimensional hypercube using the
direct connect routing module and the hypercube interconnect technology of
the iPSC/2. The point to point aggregate bandwidth of the interconnect sys-
tem, which is 2.8 MB/sec per channel, is the same as on the iPSC/2. However
the latency for the message passing is reduced from about 350 microseconds
to about 90 microseconds. The improved latency is mainly a product of the
faster execution of the message passing software on the i860 compared to the
slower Intel 80386 on the iPSC/2.

Attached to the 128 computational nodes of the NASA Ames system
are ten 1/0 nodes, each of which can store approximately 700 MB. The total
capacity of the I/O system is thus about 7 GB. These I/O nodes operate con-



currently for high throughput rates. The complete system is controlled by a
system resource module (SRM), which is based on an Intel 80386 processor.
The SRM originally handled compilation and linking of source programs, as
well as loading the executable code into the hypercube nodes and initiating
execution. As such, the SRM became a serious bottleneck in the system, due
to its slowness in compiling and linking user codes. Intel has since allevi-
ated the problem by providing cross-compilers for Sun and Silicon Graphics
workstations and system software to allow remote loading of executable code.

During 1990 the iPSC/860 has been thoroughly investigated at NASA
Ames. A first set of benchmark numbers, and some CFD applications per-
formance numbers have been published in [4]. A more recent summary is
given by Barszcz in [8]. As documented in [8] from an overall systems aspect
the main bottleneck was the SRM, which is not able to handle the demands
of a moderately large user community (about 50 to 100 users) in a produc-
tion environment. Another important result of the investigations was the
outcome of a study by Lee [25]. Lee’s analysis of the i860 floating point
performance indicates that on typical CFD kernels the best performance to
be expected is in the 10 MFLOPS range. Finally we mention a two perfor-
mance studies of the I/O system by Lou [30] and Ryan [39], which measure
the I/O performance of the concurrent file system (CFS), the parallel 1/0
device delivered by Intel.

3 Structured Grid Applications

Structured grid flow solvers, in particular multi-block structured grid flow
solvers, are the main class of production CFD tools at NASA Ames. A
number of different efforts were directed toward the implementation of such
capabilities on parallel machines. One of the first CFD results on the CM-2
was the work by Levit and Jespersen [26, 27], which was recently extended
to three dimensions [28]. Their implementation is based on the successful
ARC2D and ARC3D codes developed by Pulliam [38]. Work by Barszcz and
Chawla [9] is in progress to implement F3D, a successor code to ARC3D,
on the CM-2. On the iPSC/860 Weeratunga has implemented ARC2D (for
early results see [4]), and work is in progress to implement F3D. Weeratunga
also has developed three simulated CFD applications based on structured
grid flow solvers for the NAS Parallel Benchmarks, which are described in



Chapter 3 of [7].

The results obtained by Weeratunga, Barszcz, Fatoohi, and Venkatakr-
ishnan on the simulated CFD applications benchmark are indicative for the
current performance level of parallel machines on implicit CFD algorithms.
Performance results for “kernel” benchmarks do not fully reflect the compu-
tational requirements of a realistic, state-of-the-art CFD application. This is
because a data structure that is optimal for one particular part of the compu-
tation on a given system might be very inefficient for another part of the com-
putation. As a result, the three “simulated CFD application” benchmarks
were devised. These three benchmarks are intended to accurately represent
the principal computational and data movement requirements of modern im-
plicit CFD applications. They model the main building blocks of CFD codes
designed at NASA Ames for the solution of 3D Euler/Navier-Stokes equa-
tions using finite-volume/finite-difference discretization on structured grids.

There is one important feature which characterizes these simulated appli-
cations from a computational point of view. All three involve approximate
factorization techniques, which in turn require the solution of three sets of
multiple, independent, sparse, but structured systems of linear equations at
each time step. Each of three sets of solves keeps one coordinate direction
fixed, and solves the multiple sets of linear systems in the direction of the
grid planes orthogonal to the fixed direction. Thus the three dimensional
computational grid must be accessed by planes in three different directions.
This has a very important implication for distributed memory machines: no
single allocation scheme for the three dimensional grid is optimal. In order
to carry out the solver phase efficiently in the three different grid directions
the grids will have to be redistributed among the processors. The key to
an efficient implementation of the simulated application benchmark is then
to devise optimal distribution and communication schemes for the transition
between the three solve phases at each time step!.

The first of the simulated applications is the LU benchmark. In this
benchmark, a regular-sparse, block (5 x 5) lower and upper triangular system
is solved. This problem represents the computations associated with the
implicit operator of a newer class of implicit CFD algorithms, typified at

1Tt should be pointed out that this discussion of the simulated applications does not
apply to all production CFD codes at NASA Ames. For example the widely used F3D
code, as well as the UPS code, are for example based on a two factor scheme.



Table 1: Results for the LU Simulated CFD Application

No. | Time/Iter. | MFLOPS

System Proc. (secs.) (Y-MP)
Y-MP 1 1.73 246
8 0.25 1705

iPSC/860 64 3.05 139
128 1.90 224

CM-2 8K 5.23 82
16K 3.40 125

32K 2.29 186

NASA Ames by the code INS3D-LU [47]. This problem exhibits a somewhat
limited amount of parallelism compared to the next two.

The second simulated CFD application is called the scalar penta-diagonal
(SP) benchmark. In this benchmark, multiple independent systems of non-
diagonally dominant, scalar, penta-diagonal equations representative of com-
putations associated with the implicit operators of CFD codes such as ARC3D
[38] at NASA Ames Research Center. SP and BT are similar in many re-
spects, but there is a fundamental difference with respect to the communi-
cation to computation ratio.

The third simulated CFD application is called the block tri-diagonal
(BT) benchmark. In this benchmark, multiple independent systems of non-
diagonally dominant, block tri-diagonal equations with a (5 x 5) block size
are solved (for a related discussion of the parallel implemenation of ARC3D
see also [34]).

Performance figures for the three simulated CFD applications are shown
in Tables 1, 2 and 3. Timings are cited in seconds per iteration. In all three
tables results are reported for grids of size 64 x 64 x 64. A complete solution
of the LU benchmark requires 250 iterations. For the SP benchmark, 400
iterations are required. For the BT benchmark, 200 iterations are required.
The MFLOPS in these tables for the parallel machines are based on an
operation count established for the sequential version of the program.



Table 2: Results for the SP Simulated CFD Application

No. | Time/Iter. | MFLOPS

System Proc. (secs.) (Y-MP)
Y-MP 1 1.18 250
8 0.16 1822

iPSC/860 64 2.42 122
CM-2 8K 9.75 30
16K 5.26 56

32K 2.70 109

plication

Table 3: Results for the BT Simulated CFD Apj

No. | Time/Iter. | MFLOPS

System Proc. (secs.) (Y-MP)

Y-MP 1 3.96 224

8 0.57 1554

iPSC/860 64 4.54 199

CM-2 16K 16.64 54

32K 9.57 94




4 Unstructured Grid Applications

We discuss here work on an unstructured upwind finite-volume explicit flow
solver for the Euler equations in two dimensions that is well suited for
massively parallel implementation. The mathematical formulation of this
flow solver was proposed and implemented on the Cray-2 by Barth and
Jespersen[10]. This solver has been implemented on the CM-2 by Hammond
and Barth [20], and on the Intel iPSC/860 by Venkatakrishnan, Simon, and
Barth [46].

The unstructured grid code developed by Barth is a vertex-based finite-
volume scheme. The control volumes are non-overlapping polygons which
surround the vertices of the mesh, called the “dual” of the mesh. Associated
with each edge of the original mesh is a dual edge. Fluxes are computed along
each edge of the dual in an upwind fashion using an approximate Riemann
solver. Piecewise linear reconstruction is employed which yields second order
accuracy in smooth regions. A four stage Runge-Kutta scheme is used to
advance the solution in time. Fluxes, gradients and control volumes are
all constructed by looping over the edges of the original mesh. A complete
description of the algorithm can be found in [10, 20]. It is assumed that a
triangularization of the computational domain and the corresponding mesh
has been computed.

In both implementations the same four element wing cross-section test
case has been used. The test case unstructured mesh includes 15606 vertices,
45878 edges, 30269 faces, and 949 boundary edges. The flow was computed
at a freestream Mach number of .1 and 0 degrees angle of attack. The code
for this test case runs at 150 MFLOPS on the NAS Cray Y-MP at NASA
Ames, and requires 0.39 seconds per time step. In the Cray implementation,
vectorization is achieved by coloring the edges of the mesh.

4.1 SIMD Implementation of Unstructured Solver

For the implementation on the CM-2 Hammond and Barth [20] used a novel
partitioning of the problem which minimizes the computation and commu-
nication costs on a massively parallel computer. The following description
follows [20] closely. In a mesh-vertex scheme, solution variables are asso-
ciated with each vertex of the mesh and flux computation is performed at
edges of the non-overlapping control volumes which surround each vertex.



In conventional parallel implementations this operation is partitioned to be
performed edge-wise, i.e., each edge of the control volume is assigned to one
processor (edge-based). The resulting flux calculation contributes to two
control volumes which share the particular edge.

In the partitioning used by Hammond and Barth, each vertex of the mesh
is assigned to one processor (vertex-based). Flux computations are identical
to the edge-based scheme but computed by processors associated with ver-
tices. Fach edge of the mesh joins a pair of vertices and is associated with
one edge of the control volume.

One can direct an edge (¢,7) to determine which vertex in the pair com-
putes the flux through the shared edge of the control volume, (£, ;). When
there is a directed edge from : to j, then the processor holding vertex j sends
its conserved values to the processor holding vertex z, and the flux across
the common control volume edge is computed by processor ¢ and accumu-
lated locally. The flux through (&,;') computed by the processor holding
vertex ¢ is sent to the processor holding vertex j to be accumulated nega-
tively. Hammond and Barth show that their vertex-based scheme requires
50% less communication and asymptotically identical amounts of computa-
tion as compared with the traditional edge-based approach.

Another important feature of the work by Hammond and Barth is the use
of fast communication. A feature of the communication within the flow solver
here is that the communication pattern, although irregular, remains static
throughout the duration of the computation. The SIMD implementation
takes advantage of this by using a mapping technique developed by Hammond
and Schreiber [21] and a “Communication Compiler” developed for the CM-2
by Dahl [17]. The former is a highly parallel graph mapping algorithm that
assigns vertices of the grid to processors in the computer such that the sum
of the distances that messages travel is minimized. The latter is a software
facility for scheduling completely general communications on the Connection
Machine. The user specifies a list of source locations and destinations for
messages and enables one to fully utilize the large communication bandwidth
of the machine.

Hammond and Barth have incorporated the mapping algorithm and the
communication compiler into the flow solver running on the CM-2 and have
realized a factor of 30 reduction in communication time compared to using
naive or random assignments of vertices to processors and the router. Origi-
nally, using 8K processors of the CM-2 and a virtual processor (VP) ratio of
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2, Hammond and Barth carried out 100 time steps of the flow solver in about
71.62 seconds. An improved implementation by Hammond in [19] resulted
in 43 seconds per 100 time steps, which is equivalent to 136 MFLOPS. This
does not include setup time.

4.2 MIMD Implementation of Unstructured Solver

Similar to the SIMD implementation one of the key issues is the partitioning
of the unstructured mesh. In order to partition the mesh Venkatakrishnan et
al. [46] employ a new algorithm for the graph partitioning problem, which has
been discussed recently by Simon [41], and which is based on the computation
of eigenvectors of the Laplacian matrix of a graph associated with the mesh.
Details on the theoretical foundations of this strategy can be found in [37].
Detailed investigations and comparisons to other strategies (cf. [41]) have
shown that the spectral partitioning produces subdomains with the shortest
boundary, and hence tends to minimize communication cost.

After the application of the partition algorithm of the previous section,
the whole finite volume grid with triangular cells is partitioned into P sub-
grids, each subgrid contains a number of triangular cells which form a single
connected region. Each subgrid is assigned to one processor. All connectivity
information is precomputed, using sparse matrix type data structures.

Neighboring subgrids communicate to each other only through their in-
terior boundary vertices which are shared by the processors containing the
neighboring subgrids. In the serial version of the scheme, field quantities
(mass, momentum and energy) are initialized and updated at each vertex
of the triangular grid using the conservation law for the Euler equations ap-
plied to the dual cells. Each processor performs the same calculations on
each subgrid as it would do on the whole grid in the case of a serial compu-
tation. The difference is that now each subgrid may contain both physical
boundary edges and interior boundary edges, which have resulted from grid
partitioning. Since a finite volume approach is adopted, the communication
at the inter-processor boundaries consists of summing the local contributions
to integrals such as volumes, fluxes, gradients etc.

The performance of the Intel iPSC/860 on the test problem is given in
Table 4. The MFLOPS given are based on operation counts using the Cray
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hardware performance monitor. The efficiency is computed as

MFLOPS with N procs

Efficiency(%) = 5= =M FLOPS with 1 prod)

* 100.

Table 4: Performance of Unstructured Grid Code on the Intel
iPSC/860

Processors | secs/step | MFLOPS | efficiency(%)
2 7.39 7.9 86

4 3.70 15.8 86

8 1.94 30.2 82

16 1.08 54.1 4

32 0.59 99.2 67

64 0.31 187.5 64

128 0.19 307.9 52

In summary the performance figures on the unstructured grid code are
given in Table 5, where all MFLOPS numbers are Cray Y-MP equivalent

numbers.

Table 5: Performance Comparison of Unstructured Grid Code

Machine Processors | secs/step | MFLOPS
Cray Y-MP 1 0.39 150.0
Intel iPSC/860 64 0.31 187.5

128 0.19 307.9
CM-2 8192 0.43 136
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5 Particle Methods

Particle methods of simulation are of interest primarily for high altitude,
low density flows. When a gas becomes sufficiently rarefied the constitutive
relations of the Navier-Stokes equations (i.e. the Stokes law for viscosity
and the Fourier law for heat conduction) no longer apply and either higher
order relations must be employed (e.g. the Burnett equations [31]), or the
continuum approach must be abandoned and the molecular nature of the gas
must be addressed explicitly. The latter approach leads to direct particle
simulation.

In direct particle simulation, a gas is described by a collection of simu-
lated molecules thus completely avoiding any need for differential equations
explicitly describing the flow. By accurately modeling the microscopic state
of the gas, the macroscopic description is obtained through the appropriate
integration. The primary disadvantage of this approach is that the computa-
tional cost is relatively large. Therefore, although the molecular description
of a gas is accurate at all densities, a direct particle simulation is competitive
only for low densities where accurate continuum descriptions are difficult to
make.

For a small discrete time step, the molecular motion and collision terms
of the Boltzmann equation may be decoupled. This allows the simulated
particle flow to be considered in terms of two consecutive but distinct events
in one time step, specifically there is a collisionless motion of all particles
followed by a motionless collision of those pairs of particles which have been
identified as colliding partners. The collisionless motion of particles is strictly
deterministic and reversible. However, the collision of particles is treated on
a probabilistic basis. The particles move through a grid of cells which serves
to define the geometry, to identify colliding partners, and to sample the
macroscopic quantities used to generate a solution.

The state of the system is updated on a per time step basis. A single
time step is comprised of five events:

1. Collisionless motion of particles.
2. Enforcement of boundary conditions.

3. Pairing of collision partners.
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4. Collision of selected collision partners.

5. Sampling for macroscopic flow quantities.

Detailed description of these algorithms may be found in [32] and [13]

5.1 SIMD Implementation of Particle Simulation

Particle simulation is distinct from other CFD applications in that there are
two levels of parallel granularity in the method. There is a coarse level con-
sisting of cells in the simulation (which are approximately equivalent to grid
points in a continuum approach) and there is a fine level consisting of indi-
vidual particles. At the time of the CM-2 implementation there existed only
the fieldwise model of the machine, and it was natural for Dagum [13] to de-
compose the problem at the finest level of granularity. In this decomposition,
the data for each particle is stored in an individual virtual processor in the
machine. A separate set of virtual processors (or VP set) stores the geome-
try and yet another set of virtual processors stores the sampled macroscopic
quantities.

This decomposition is conceptually pleasing however in practice the rela-
tive slowness of the Connection Machine router can prove to be a bottleneck
in the application. Dagum [13] introduces several novel algorithms to mini-
mize the amount of communication and improve the overall performance in
such a decomposition. In particular, steps 2 and 3 of the particle simulation
algorithm require a somewhat less than straightforward approach.

The enforcement of boundary conditions requires particles which are
about to interact with a boundary to get the appropriate boundary infor-
mation from the VP set storing the geometry data. Since the number of
particles undergoing boundary interaction is relatively small, a master/slave
algorithm is used to minimize both communication and computation. In this
algorithm, the master is the VP set storing the particle data. The master
creates a slave VP set large enough to accommodate all the particles which
must undergo boundary interactions. Since the slave is much smaller than
the master, instructions on the slave VP set execute much faster. This more
than makes up for the time that the slave requires to get the geometry in-
formation and to both get and return the particle information.

The pairing of collision partners requires sorting the particle data such
that particles occupying the same cell are represented by neighboring virtual
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processors in the one dimensional NEWS grid storing this data. Dagum [15]
describes a very efficient sorting algorithm suitable for this purpose. The
algorithm makes use of the realization that the particle data moves through
the CM processors in a manner analogous to the motion of the particles in
the simulation. The mechanism for disorder is the motion of particles, and
the extent of motion of particles, over a single time step, is small. This can
be used to greatly reduce the amount of communication necessary to re-order
the particles.

These algorithms have been implemented in a three-dimensional particle
simulation running on the CM-2. The implementation was written in C/Paris
and is described in [16]. The code has been used to simulate the flow over a
re-entry vehicle using over 3.2 x 107 particles in a grid with 4.5 x 10° cells at a
rate of 2.4usec/particle/time step using all 32K processors. By comparison, a
fully vectorized equivalent simulation on a single processor of the Cray YMP
runs at 1.0usec/particle/time step and 86 MFLOPS as measured by the
Cray hardware performance monitor. (Note that a significant fraction of a
particle simulation involves integer arithmetic and the MFLOP measure is
not completely indicative of the amount of computation involved).

5.2 MIMD Implementation of Particle Simulation

The MIMD implementation differs from the SIMD implementation not so
much because of the difference in programming models but because of the
difference in granularity between the machine models. Whereas the CM-2
has 32768 processors, the iPSC/860 has only 128. Therefore on the iPSC/860
it is natural to apply a spatial domain decomposition rather than the data
object decomposition used on the CM-2.

In McDonald’s [33] implementation, the spatial domain of the simulation
is divided into a number of sub-domains greater than or equal to the desired
number of node processes. Communication between processes occurs as a
particle passes from one region to another and is carried out asynchronously,
thus allowing overlapping communication and computation. Particles cross-
ing region “seams” are treated simply as an additional type of boundary
condition. Each simulated region of space is surrounded by a shell of extra
cells that, when entered by a particle, directs that particle to the neighbor-
ing sub-domains. This allows the representation of simulated space (i.e. the
geometry definition) to be distributed along with the particles. The aim is
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Table 6: Performance of Particle Simulation on the Intel iPSC/860

Processors | us/prt/step | MFLOPS | efficiency(%)
2 24.4 3.5 97

4 12.5 6.9 95

8 6.35 13.5 93

16 3.25 26.5 91

32 1.63 52.8 91

64 0.85 101 87

128 0.42 215 88

to avoid maintaining a representation of all simulated space which, if stored
on a single processor, would quickly become a serious bottleneck for large
simulations, and if replicated would simply be too wasteful of memory.

Within each region the sequential or vectorized particle simulation is ap-
plied. This decomposition allows for great flexibility in the physical models
that are implemented since node processes are asynchronous and largely in-
dependent of each other. Recall that communication between processes is
required only when particles cross region seams. This is very fortuitous since
the particle motion is straightforward and fully agreed upon. The important
area of research has to do with the modelling of interaction of particles with
solid boundaries and each other, and since this part of the problem does not
directly affect communication, particle models can evolve without requiring
great algorithmic changes.

McDonald’s implementation is fully three-dimensional with dynamic load
balancing and chemistry modelling. The performance of the code on a 3D
heat bath is given in Table 6. The geometry and spatial decomposition of
the heat bath simulation ezaggerated the area to volume ratio of the regions
in order to be conservative in approximating the performance in a real ap-
plication. The most promising feature of these results is the linear speed
up obtained when the problem size is allowed to scale with the number of
processors. This indicates that the performance of the code should continue
to increase with larger system configurations.

The domain decomposition is dynamic thus permitting a good load bal-
ance to exist throughout a calculation. Load balancing is accomplished by
allowing a number of sub-domains to exist at each processing node. As
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the load becomes unbalanced, sub-domains are reassigned to processors in
a manner that approximates an equal workload at each node. The balanc-
ing operation is repeated a number of times as the solution develops but
is unnessecary once a steady state situation is reached. Other simulation
costs such as memory usage and communication can also be balanced by ap-
propriately assigning sub-domains to processors. For example, if neighboring
sub-domains in the physical domain are assigned to the same processor, com-
munication is not required as a particle moves from one sub-domain to the
next.

For the particle methods the corresponding summary of performance fig-
ures for all three machines can be found in Table 7. The figures in Table
7 should be interpreted very carefully. The simulations run on the different
machines were comparable, but not identical. The MFLOPS are Cray Y-MP
equivalent MFLOPS ratings based on the hardware performance monitor.
Only 32-bit arithmetic is required in the method however 64-bit arithmetic
is used on the Cray systems.

Table 7: Performance Comparison of Particle Simulation Code

Machine Processors | usecs/particle/step | MFLOPS
Cray 2 1 2.0 43
Cray Y-MP 1 1.0 86
Intel iPSC/860 128 0.4 215
CM-2 32768 2.0 43
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6 Grand Challenge Computational Require-
ments

We would like to contrast now what has been achieved so far with the “Grand
Challenges” to be solved on parallel machines in the 1990s. As part of the
“Federal High Performance Computing Program”, NASA’s portion of the
“High Performance Computing and Communication Program (HPCCP)” fo-
cuses on research and development in areas which show promise to deliver
new capabilities to important NASA missions by the late 1990s (for more de-
tails see [36]). Two NASA grand challenges have been chosen as focal points
for the HPCCP. A grand challenge is a fundamental problem in science and
engineering, with broad applications, whose solution would be enabled by the
application of high performance computing technology, which could become
available in the near future. An important criterion for the selection of grand
challenge applications was the breadth of technical considerations presented
in a grand challenge, as well as the potential for applying the newly devel-
oped technologies beyond the specific problem area. The two NASA grand
challenges are:

e integrated, multi-disciplinary simulations and design optimizations of
aerospace vehicles throughout their mission profiles.

e multi-disciplinary modeling and data analysis of earth and space science
physical phenomena.

The first grand challenge is the focus of the NASA Computational Aero-
Sciences (CAS) program [22]. Within this program, activities are focused
on the development of multi-disciplinary design tools for the high-speed
civil transport (HSCT) and high-performance aircraft (HPA). In the high-
performance aircraft area, the primary interest is to develop the capability
to predict the performance of next generation fighter concepts operating in
the most critical portions of their flight regime. To achieve performance lev-
els beyond present generation vehicles, these next generation fighters designs
must include higher levels of system integration than can be obtained with
present design tools. Towards this goal, aerodynamic, propulsion system,
controls, structural, and even acoustic, analysis modules will be integrated
into a single software system. The challenges posed by the development
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and application of such a multi-disciplinary high-performance aircraft anal-
ysis tool will be used to illustrate the computational issues in such grand
challenge computations.

6.1 Grand Challenges of the 1990’s (An Example)

Powered-lift aircraft utilize a mix of wing-borne and propulsive lift to achieve
vertical or short take-off and landings (V/STOL). With careful design, powered-
lift aircraft can also out perform conventional aircraft in other portions of the
flight envelope via the use of powered-lift features (e.g., vectoring thrust to
achieve super maneuverability). Successful powered-lift aircraft designs are
developed from a detailed understanding of the interaction of very complex
fluid flows (see Figure 1), with all of the major aircraft sub-systems, including
the airframe, and propulsion and control systems. Until recently, no com-
putational techniques have been available for the analysis of these complex
powered-lift flows [45], and multi-disciplinary interactions [1]. Hence, the
design of high-performance powered-lift aircraft has been among the most
time-consuming and costly aerospace design activities. As an example, the
Harrier was originally conceived in the mid 1950’s and is still undergoing
significant design studies [18]. Therefore, development of advanced multi-
disciplinary analysis tools is being pursued.

A successful computational design tool for high-performance powered-lift
aircraft must be able to predict aerodynamic, thermal, and acoustic loads
for a vehicle during operations in-ground-effect, transition from jet-borne
to wing-borne flight, and in up-and-away flight. Also of key interest is the
prediction of engine performance during V/STOL and high-angle-of-attack
maneuvers, when inlet flow distortion may degrade thrust or result in engine
compressor stall. The V/STOL and transition modes also put severe chal-
lenges on the performance of the control system in utilizing the airframe and
propulsion systems to retain stable flight.

To model these interactions, at least six computational modules must be
integrated (see Figure 2):

o Navier-Stokes
e Engine performance

e Structural Heating
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Figure 1: Harrier Jet in Ground Effect

e Acoustics
e Control (including pilot model or auto-pilot)

e Aircraft dynamics

Work is presently underway in the Powered-Lift Group of the Applied
Computational Fluids Branch at NASA-Ames Research Center towards the
Navier-Stokes/Structural Heating/Engine Deck analysis of a Harrier AV-8B
in-ground-effect [44]. Work is also underway at NASA- Lewis to develop
advanced propulsion system analysis capabilities. Future HPCCP high per-
formance aircraft goals include integrating the aircraft and propulsion anal-
ysis tools presently being developed at Ames and Lewis, respectively, into a
complete vehicle analysis tool applicable to next generation fighter concepts.

6.2 Surface Modeling and Grid Generation Require-
ments

A major bottleneck in the application of the described computational de-
sign tools will be the development of surface modeling and grid generation
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Figure 2: Powered-Lift Integrated Multi-Disciplinary System

software which allows:

1. Surface model definition in less than 1 week

2. Complete grid generation in less than 1 week

3. Design change/regridding of components in less than 1 day

4. Vehicle deformation (e.g., aero-elastic effects) during computation

5. Relative vehicle motion (e.g., landing/take-off) and effector (e.g., flaps
and jets) movement during computation

Tasks 1-3 require the development of powerful interactive software tools
on workstation platforms, with Task 2 requiring some distributed processing
to a super computer (vector or parallel). These requirements are very chal-
lenging, but do not necessarily involve parallel computers, and will not be
addressed in detail here.

Tasks 4 and 5 must be performed during the numerical simulation on the
parallel computer systems. Accommodating vehicle deformation (Task 4) will
require that a parametric representation (e.g., NURBS) of the vehicle surface
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reside on the parallel computer, and that this geometric representation can
be manipulated and sampled dynamically without user intervention. It will
also be required that new volume grids be created dynamically, using the
deforming vehicle geometry as the new boundary condition for the algebraic
or PDE (e.g., elliptic) volume grid generator. Accounting for vehicle and
effector movement (Task 5) will be best accommodated using an overset grid
technology (e.g. [11, 12]). In this case, as the aircraft moves in relationship to
the ground (for example) the grids attached to the aircraft and ground will be
in relative motion, and new interpolation stencils must be computed at each
iteration. This requires that the nearest-point and interpolation features of
the overset-grid technology be ported to the parallel computers. Considering
that the technology required for Tasks 4-5 is only in the formative stages
of development on vector computers, the challenge of fully-developing this
software and implementing it in the parallel environment is formidable.

6.3 Flow Simulation (CFD) Requirements

In 1991, a state-of-the-art simulation of the flow about a Harrier operating
in-ground effect required approximately 2.8 million points, 20 Mwords of run-
time memory, and about 40 hours of CPU time on a Cray Y-MP running
at a sustained speed of approximately 160 MFLOPS. Such a computation
solves the Navier-Stokes equations for the viscous flow about the Harrier
using, in this case, a simple algebraic turbulence model. The grid was the
coarsest possible that would still allow most of the important flow features
to be resolved. The predicted flow features are in good agreement with flight
flow visualization [44].

It is estimated that to obtain “engineering-accuracy” predictions of sur-
face pressures, heat transfer rates, and overall forces, the grid size will have
to be increased to a minimum of 5.0 million points. If the unsteady motion
of the flow structures is to be resolved, at least 50,000 iterations will also
be required. Also, more advanced turbulence modeling must be included.
In summary, we anticipate the following minimum requirements in terms
of floating point operations for just the external flow simulation element of
future grand challenge computations:

e 5,000,000 grid points

e 50,000 iterations
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e 5.000 operations per point per iteration

e 10%° operations per problem

The actual computational speed requirements for such a calculation de-
pend on the mode in which the calculation is carried out. In a proof-of-
concept mode such a calculation may be carried out only once as a “heroic
effort”. If this could be done in 100 to 1000 hours turn-around-time, it would
translate into a sustained speed between 3 and 0.3 GFLOPS. Design and au-
tomated design modes require a much lower turn-around-time and thus result
in much higher requirements for computational speed. The corresponding
figures are summarized in Table 8.

Table 8: Requirements for Flow Simulation

Solution Mode Turn-around-time | Required Performance
Proof-of-concept 1000 — 100 hours 0.3 — 3 GFLOPS
Design 10 — 1 hours 30 — 300 GFLOPS
Automated Design 0.1 — 0.01 hours 3 — 30 TFLOPS

These computational requirements are accompanied by a corresponding
increase in memory and storage requirements. Approximately 40 storage
locations are required per grid point. If all of the computational zones remain
in memory, this translates to a requirement for 200 million words of run-time
memory (to date, often a desirable feature for parallel systems). For unsteady
flow analysis 100-1000 time steps (at 8 words per point) must be stored. This
leads to a requirement of 4-40 gwords of “disk” storage per problem.

If we compare these requirements with the computer resources required to
address the "grand challenges” of the 1980’s (e.g., a 1.0 million point steady
Navier-Stokes simulation, on a Cray-2 class machine, of the external flow
about an aircraft at cruise) we arrive at Table 9.

We note in particular that a 5000 fold increase in data storage and ma-
nipulation capabilities will be required to address CFD grand challenges of
the 1990’s. A single solution file for a time step will have up to 40 Mwords
(320 Mbytes) of data. The above discussion assumes that the computation
for advancing the solution one time step can be carried out in about 10 sec-
onds. Even though it is not necessary to store a solution file at every time
step, these figures show the need for a sustained I/0O bandwidth of at least 40
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Table 9: Proof-of-concept requirements: 1980’s vs. 1990’s

1980’s 1990’s | Ratio
100 hr. run time | 40 MFLOPS | 3000 MFLOPS 75
run-time memory 35 Mwords 200 Mwords 6
“disk” storage 8 Mwords | 40000 Mwords 5000

Mbytes/sec. For a more detailed discussion of 1/O requirements for parallel

CFD see the report by Ryan [39].
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6.4 Grand Challenges of the 90’s: Multi-disciplinary
computations

The discussion in the previous section was restricted to prediction of the ex-
ternal flow about an advanced fighter concept. As explained in subsection
2.1 the Grand Challenge computations of the 90’s will be multi-disciplinary,
combining computational techniques useful in analyzing a number of indi-
vidual areas such as structures, controls, and acoustics, in addition to the
baseline CFD simulations. It is possible in all these areas to derive estimates
for the performance requirements. These estimates are given in Table 10
as multiplicative factors of additional requirements over the single-discipline
baseline CFD simulation.

Table 10: Increase in memory and CPU requirements over baseline
CFD simulation

Discipline Memory | CPU Time
increase increase
Structural Dynamics
modal analysis x 1 X 2
FEM analysis X 2 X 2
thermal analysis X 2 X 2
Propulsion
inlet /nozzle simulation X 2 X 2
engine performance deck X 2 X 2
combustion model, e.g. scramjet x 4 x 10
turbojet engine (full sim.) x 10-100 x 10-100
Controls
control law integration x 1 x 1
control surface aerodynamics X 2 X 2
thrust vector control X 2 X 2
control jets X 2 X 2
Acoustics x 10 x 10
Numerical Optimization Design X 2 x 10-100

It is clear that computational resource requirements can increase rapidly
for multi-disciplinary computations. If the corresponding factors for multi-
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disciplinary V/STOL aircraft design are extracted from Table 10, and com-
bined with the numbers for the baseline external aerodynamics prediction,
quickly Gword and near TFLOP requirements arise. The details are given

in Table 11 [36].

Table 11: Flops and Run-time Memory Requirements for 5 Hour
Run.

Mwords | GFLOPS
Base CFD 200 60
Structural
thermal analysis X 2 X 2
Propulsion
inlet /nozzle simulations X 2 X 2
engine performance deck X 2 X 2
Controls
control law integration x 1 x 1
thrust vector control X 2 X 2
Total 2000 600

It should be noted that the factors in Table 10 are based on the as-
sumption that the physical frequencies introduced because of the multi-
disciplinary integration can be resolved with the time steps required by the
aerodynamics simulation. Additional compute time may be required if the
multi-disciplinary system exhibits higher frequency modes which must be
resolved.
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7 Conclusions

Table 12: Summary of Performance on Parallel Machines
(fraction of single processor Cray Y-MP performance)

Application CM-2 | iPSC/860

32K proc. | 128 proc.
Structured grid (LU) 0.76 0.91
Unstructured grid* 0.91 2.05
Particle methods 0.50 2.50

*) result for 8K processors

The results in Table 12 summarize most of the efforts discussed in this paper.
They demonstrate that on current generation parallel machines performance
on actual CFD applications is obtained which is approximately equivalent to
the performance of one to two processors of a Cray Y-MP. All applications
considered here are not immediately parallelized and both on SIMD and
MIMD machines considerable effort must be expended in order to obtain an
efficient implementation. It has been demonstrated by the results obtained
at NASA Ames that this can be done, and that super computer level perfor-
mance can be obtained on current generation parallel machines. Furthermore
the particle simulation code on the CM-2 is a production code currently used
to obtain production results (see [14]). The iPSC/860 implementation should
be in production use by the end of 1991.

Our results also demonstrate another feature which has been found across
a number of applications at NASA Ames: massively parallel machines quite
often obtain only a fraction of their peak performance on realistic applica-
tions. In the applications considered here, there are at least two requirements
which form the primary impediment in obtaining the peak realizable perfor-
mance from these machines. One of these requirements is for unstructured,
general communication with low latency and high bandwidth, which arises
both in the unstructured application and in particle codes. The other re-
quirement is for high bandwidth for a global exchange as it occurs in array
transposition. This is important for the structured grid problems, since three
dimensional arrays have to be accessed in the direction of the three different
grid planes. Neither the CM-2 nor the iPSC/860 deliver the communication
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bandwidth necessary for these CFD applications. Experience has shown that
CFD applications require on the order of one memory reference per floating
point operation and a balanced system should have a memory bandwidth
comparable to its floating point performance. In these terms, current paral-
lel systems deliver only a fraction of the required bandwidth.

It spite of these promising results all the high expectations for parallel
machines have not yet been met. In particular we do not believe that there
is or will be a 10 GFLOPS sustained performance parallel machine available
before 1993. Even on the new Intel Touchstone Delta machine the applica-
tions described here will perform at best in the 1 - 2 GFLOPS ? range. The
question then is (to quote Tom Lasinski [24]): “So why are we still bullish
on parallel computers?”. The answer, also given in [24], is: “Parallel com-
puters have a tremendous growth potential.” Even if we assume that current
machine such as the CM-2 and the Intel iPSC/860 achieve only 1/50 of their
peak performance on parallel CFD applications, we can extrapolate to the
near future and predict a great increase in performance. In 1995 a machine
based on commodity microprocessors with 160 MHz, three results per clock
period, and 2048 processors is entirely likely and feasible. Such a machine
would have approximately 1 TFLOPS peak performance. Even at 1/50 of
this peak performance, we would be able to perform CFD calculations at a
level of 20 GFLOPS sustained. With improvements in hardware, software,
and algorithms we should be able to obtain even better performance.

As outlined in Section 6, these significant increases in compute power
are essential to accomplishing the computational Grand Challenges of the
1990’s. Even detailed single discipline computations will require GFLOP
performance, with the multi-disciplinary simulations becoming just feasible
on the most advanced systems of the 1990’s.
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